4.7 MEDIANS, ALTITUDES, PERPENDICULAR BISECTORS SKETCHPAD

DEF: A MEDIAN of a triangle is a segment from a vertex to the midpoint of the opposite side.

DEF: An **ALTITUDE** of a triangle is the perpendicular segment **from a vertex** to the line that contains the opposite side.

DEF: A **PERPENDICULAR BISECTOR** of a segment is **a line** (or ray or segment) that is perpendicular to the segment at its midpoint.

Given triangle ABC, draw a perpendicular bisector to AC. Connect any point on the perpendicular bisector to the endpoints of AC. What do you know?

We know that it takes 2 points to determine a line. Given midpoint on FI and AI = AF. What can you show is true? Would the same things be true if you had RF = RI and AF = AI?

If BF bisects <ABC and $\overline{GD} \perp \overline{AB}$, $\overline{GE} \perp \overline{BC}$, what can you find?

TH 4-5:	If a point lies on the perpendicular bisector of a segment,
	then
TH: 4-6:	If a point is equidistant from the endpoints of a segment,
	then:
TH 4-7:	If a point lies on the bisector of an angle,
t	hen
TH 4-8:	If a point is equidistant from the sides of an angle,
t	hen

Complete according to the picture.

2. If \overline{PC} is a perpendicular bisector of _____ then BC = DC.

- 3. If <APD is a right angle, then _____and ____ are altitudes.
- 4. If \overline{PC} is a median of \triangle PBD, then _____
- 5. If BC = CD and $\overline{PC} \perp \overline{BD}$, then ______ is a perpendicular bisector of _____.
- 6. If \overline{PC} and \overline{AC} are both altitudes of $\triangle PCA$, then ______ is a right angle.

- 1. If \overrightarrow{BX} bisects <ABC, then < \cong < and DX = ____.
- 2. If DX is the perpendicular bisector of EB, then $ED = \underline{\hspace{1cm}}$ and $XE = \underline{\hspace{1cm}}$.
- 3. If XB = XF, then _____ is the perpendicular bisector of \overline{BF} , and $\langle XBF \cong$ _____.
- 4. If XD = XG, then _____is the bisector of <_____.

Prove: The bisector of the vertex angle of an isosceles triangle is also the perpendicular bisector of the base.

Prove: If an altitude of a triangle bisects the side to which it is drawn, then the triangle is isosceles.

Prove: The medians to the congruent sides of an isosceles triangle are congruent.

 $\label{eq:Given:equation} \mbox{Given: } \overline{\frac{PQ}{PQ}} \ \ \mbox{bisects} < P \\ \mbox{bisects} < Q$

Prove: \overline{PM} is the altitude of $\triangle PRS$

Prove: The bisectors of the base angles of an isosceles triangle form with the base another isosceles triangle.

Given: \overline{PS} AND \overline{LT} are altitudes.

 $\overline{PT} \ \overline{LS}$

Prove: $\langle SPL \cong \langle TLP \rangle$

- A) A town wants to build a beach on the lake front equidistant from the recreation center and the school. Show point B where the beach house should be located.
- b) The town also wants to build a boat-launching site that is equidistant from Elm Road and Main Street. Find the point L where it should be built.
- c) On your diagram, locate the spot F for a flagpole that is to be the same distance from the recreation center, the school and the courthouse.

Geo 9 Ch 4.7

EXTRA CREDIT

Given: $m < RTS = 90^{\circ}$,

 $\overrightarrow{\underline{MN}}$ is the \bot bisector of \overline{TS}

Prove: \overline{TM} is a median

