A Problem of Forces

For each of the following scenarios, draw a free-body diagram. In addition, in the box to the right of each free-body diagram, draw vectors that represent the instantaneous linear and angular velocities and the instantaneous linear and angular accelerations.

At rest

v and ω

a and α

Rolling to right at constant v

Rolling **down** an incline without sliding

Rolling **up** an incline without sliding

Previously rolling and then moving up an incline without friction

A Problem of Forces

For each of the following scenarios, draw a free-body diagram. In addition, in the box to the right of each free-body diagram, draw vectors that represent the instantaneous linear and angular velocities and the instantaneous linear and angular accelerations.

