1990-C MECH-2

Mech. 2. A block of mass m slides up the incline shown above with an initial speed v_0 in the position shown.

- (a) If the incline is frictionless, determine the maximum height H to which the block will rise, in terms of the given quantities and appropriate constants.
- (b) If the incline is rough with coefficient of sliding friction μ , determine the maximum height to which the block will rise in terms of H and the given quantities.

A thin hoop of mass m and radius R moves up the incline shown above with an initial speed v_0 in the position shown.

- (c) If the incline is rough and the hoop rolls up the incline without slipping, determine the maximum height to which the hoop will rise in terms of H and the given quantities.
- (d) If the incline is frictionless, determine the maximum height to which the hoop will rise in terms of H and the given quantities.

Block A of mass 2M hangs from a cord that passes over a pulley and is connected to block B of mass 3M that is free to move on a frictionless horizontal surface, as shown above. The pulley is a disk with frictionless bearings, having a radius R and moment of inertia $3MR^2$. Block C of mass 4M is on top of block B. The surface between blocks B and C is NOT frictionless. Shortly after the system is released from rest, block A moves with a downward acceleration a, and the two blocks on the table move relative to each other.

In terms of M, g, and a, determine the

- (a) tension T_v in the vertical section of the cord
- (b) tension T_h in the horizontal section of the cord

If a = 2 meters per second squared, determine the

- (c) coefficient of kinetic friction between blocks B and C
- (d) acceleration of block C

Advanced Physics HH#3.1 2 AP Mech C Problems+KEY

1990-C MECH-2

Mech. 2. A block of mass m slides up the incline shown above with an initial speed v_0 in the position shown.

- (a) If the incline is frictionless, determine the maximum height H to which the block will rise, in terms of the given quantities and appropriate constants.
- (b) If the incline is rough with coefficient of sliding friction μ , determine the maximum height to which the block will rise in terms of H and the given quantities.

A thin hoop of mass m and radius R moves up the incline shown above with an initial speed v_0 in the position shown.

- (c) If the incline is rough and the hoop rolls up the incline without slipping, determine the maximum height to which the hoop will rise in terms of H and the given quantities.
- (d) If the incline is frictionless, determine the maximum height to which the hoop will rise in terms of H and the given quantities.

c) (KETHENS + KEND) = MULL

$$\frac{1}{2}mv^2 + \frac{1}{2}(mR^2)(r^2) = mugh$$
 $mv^2 = mugh$
 $mv^2 = mugh$
 $mv^2 = 2H$
 $mv^2 = 2H$

JOHNOUS THERE IS NO LOSS

OF KEAR AS HOOD

GOES OF INCLINE

LEWY - GPH

ANNY

LINEY = H

(A)

Block A of mass 2M hangs from a cord that passes over a pulley and is connected to block B of mass 3M that is free to move on a frictionless horizontal surface, as shown above. The pulley is a disk with frictionless bearings, having a radius R and moment of inertia $3MR^2$. Block C of mass 4M is on top of block B. The surface between blocks B and C is NOT frictionless. Shortly after the system is released from rest, block A moves with a downward acceleration a, and the two blocks on the table move relative to each other.

In terms of M, g, and a, determine the

- (a) tension T_{Γ} in the vertical section of the cord
- (b) tension T_h in the horizontal section of the cord

If a = 2 meters per second squared, determine the

- (c) coefficient of kinetic friction between blocks B and C
- (d) acceleration of block C

C) BUX C WILL ACCEL TO PIGHT DUETO FOR BYW BUXES FASTS

$$\Sigma F_8 : T_h - F_f = 3Ma$$

$$T_h - MF_N = 3Ma$$

$$SUB-IN$$

$$T_h = M4Mg = 3Ma$$

$$T_h = M4Mg = M4Mg$$

$$T_h = M4Mg$$

$$T_h = M4Mg$$

$$T_h = M4Mg$$

$$T_h = M4M$$